direct product, metabelian, supersoluble, monomial
Aliases: C22×C32⋊C12, C62⋊5C12, C62⋊7Dic3, C62.41D6, (C2×C62).7C6, He3⋊7(C22×C4), C62.13(C2×C6), (C2×C62).10S3, (C22×He3)⋊6C4, C6.22(C6×Dic3), C32⋊2(C22×C12), (C23×He3).4C2, C23.4(C32⋊C6), (C2×He3).27C23, C32⋊2(C22×Dic3), (C22×He3).30C22, C6.45(S3×C2×C6), (C3×C6)⋊2(C2×C12), C3.2(Dic3×C2×C6), (C2×C6).63(S3×C6), (C2×He3)⋊6(C2×C4), C3⋊Dic3⋊5(C2×C6), (C2×C3⋊Dic3)⋊6C6, (C3×C6)⋊2(C2×Dic3), (C3×C6).9(C22×C6), (C22×C6).29(C3×S3), (C3×C6).35(C22×S3), (C22×C3⋊Dic3)⋊2C3, (C2×C6).22(C3×Dic3), C2.2(C22×C32⋊C6), C22.11(C2×C32⋊C6), SmallGroup(432,376)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C2×He3 — C32⋊C12 — C2×C32⋊C12 — C22×C32⋊C12 |
C32 — C22×C32⋊C12 |
Generators and relations for C22×C32⋊C12
G = < a,b,c,d,e | a2=b2=c3=d3=e12=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1d, ede-1=d-1 >
Subgroups: 689 in 221 conjugacy classes, 102 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, C2×C6, C2×C6, C22×C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, He3, C3×Dic3, C3⋊Dic3, C62, C62, C22×Dic3, C22×C12, C2×He3, C2×He3, C6×Dic3, C2×C3⋊Dic3, C2×C62, C2×C62, C32⋊C12, C22×He3, Dic3×C2×C6, C22×C3⋊Dic3, C2×C32⋊C12, C23×He3, C22×C32⋊C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C23, Dic3, C12, D6, C2×C6, C22×C4, C3×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C3×Dic3, S3×C6, C22×Dic3, C22×C12, C32⋊C6, C6×Dic3, S3×C2×C6, C32⋊C12, C2×C32⋊C6, Dic3×C2×C6, C2×C32⋊C12, C22×C32⋊C6, C22×C32⋊C12
(1 16)(2 13)(3 14)(4 15)(5 46)(6 47)(7 48)(8 45)(9 32)(10 29)(11 30)(12 31)(17 42)(18 43)(19 44)(20 41)(21 27)(22 28)(23 25)(24 26)(33 40)(34 37)(35 38)(36 39)(49 86)(50 87)(51 88)(52 89)(53 90)(54 91)(55 92)(56 93)(57 94)(58 95)(59 96)(60 85)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 97)(69 98)(70 99)(71 100)(72 101)(73 134)(74 135)(75 136)(76 137)(77 138)(78 139)(79 140)(80 141)(81 142)(82 143)(83 144)(84 133)(109 128)(110 129)(111 130)(112 131)(113 132)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(120 127)
(1 30)(2 31)(3 32)(4 29)(5 20)(6 17)(7 18)(8 19)(9 14)(10 15)(11 16)(12 13)(21 39)(22 40)(23 37)(24 38)(25 34)(26 35)(27 36)(28 33)(41 46)(42 47)(43 48)(44 45)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 129)(56 130)(57 131)(58 132)(59 121)(60 122)(61 79)(62 80)(63 81)(64 82)(65 83)(66 84)(67 73)(68 74)(69 75)(70 76)(71 77)(72 78)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(91 109)(92 110)(93 111)(94 112)(95 113)(96 114)(97 135)(98 136)(99 137)(100 138)(101 139)(102 140)(103 141)(104 142)(105 143)(106 144)(107 133)(108 134)
(1 58 137)(2 134 55)(3 52 143)(4 140 49)(5 85 74)(6 83 94)(7 91 80)(8 77 88)(9 119 64)(10 61 116)(11 113 70)(12 67 110)(13 73 92)(14 89 82)(15 79 86)(16 95 76)(17 65 112)(18 109 62)(19 71 118)(20 115 68)(21 117 66)(22 63 114)(23 111 72)(24 69 120)(25 130 101)(26 98 127)(27 124 107)(28 104 121)(29 102 123)(30 132 99)(31 108 129)(32 126 105)(33 142 59)(34 56 139)(35 136 53)(36 50 133)(37 93 78)(38 75 90)(39 87 84)(40 81 96)(41 122 97)(42 106 131)(43 128 103)(44 100 125)(45 138 51)(46 60 135)(47 144 57)(48 54 141)
(1 36 48)(2 45 33)(3 34 46)(4 47 35)(5 14 37)(6 38 15)(7 16 39)(8 40 13)(9 23 20)(10 17 24)(11 21 18)(12 19 22)(25 41 32)(26 29 42)(27 43 30)(28 31 44)(49 57 53)(50 54 58)(51 59 55)(52 56 60)(61 65 69)(62 70 66)(63 67 71)(64 72 68)(73 77 81)(74 82 78)(75 79 83)(76 84 80)(85 89 93)(86 94 90)(87 91 95)(88 96 92)(97 105 101)(98 102 106)(99 107 103)(100 104 108)(109 113 117)(110 118 114)(111 115 119)(112 120 116)(121 129 125)(122 126 130)(123 131 127)(124 128 132)(133 141 137)(134 138 142)(135 143 139)(136 140 144)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
G:=sub<Sym(144)| (1,16)(2,13)(3,14)(4,15)(5,46)(6,47)(7,48)(8,45)(9,32)(10,29)(11,30)(12,31)(17,42)(18,43)(19,44)(20,41)(21,27)(22,28)(23,25)(24,26)(33,40)(34,37)(35,38)(36,39)(49,86)(50,87)(51,88)(52,89)(53,90)(54,91)(55,92)(56,93)(57,94)(58,95)(59,96)(60,85)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,97)(69,98)(70,99)(71,100)(72,101)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,141)(81,142)(82,143)(83,144)(84,133)(109,128)(110,129)(111,130)(112,131)(113,132)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,30)(2,31)(3,32)(4,29)(5,20)(6,17)(7,18)(8,19)(9,14)(10,15)(11,16)(12,13)(21,39)(22,40)(23,37)(24,38)(25,34)(26,35)(27,36)(28,33)(41,46)(42,47)(43,48)(44,45)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,131)(58,132)(59,121)(60,122)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,135)(98,136)(99,137)(100,138)(101,139)(102,140)(103,141)(104,142)(105,143)(106,144)(107,133)(108,134), (1,58,137)(2,134,55)(3,52,143)(4,140,49)(5,85,74)(6,83,94)(7,91,80)(8,77,88)(9,119,64)(10,61,116)(11,113,70)(12,67,110)(13,73,92)(14,89,82)(15,79,86)(16,95,76)(17,65,112)(18,109,62)(19,71,118)(20,115,68)(21,117,66)(22,63,114)(23,111,72)(24,69,120)(25,130,101)(26,98,127)(27,124,107)(28,104,121)(29,102,123)(30,132,99)(31,108,129)(32,126,105)(33,142,59)(34,56,139)(35,136,53)(36,50,133)(37,93,78)(38,75,90)(39,87,84)(40,81,96)(41,122,97)(42,106,131)(43,128,103)(44,100,125)(45,138,51)(46,60,135)(47,144,57)(48,54,141), (1,36,48)(2,45,33)(3,34,46)(4,47,35)(5,14,37)(6,38,15)(7,16,39)(8,40,13)(9,23,20)(10,17,24)(11,21,18)(12,19,22)(25,41,32)(26,29,42)(27,43,30)(28,31,44)(49,57,53)(50,54,58)(51,59,55)(52,56,60)(61,65,69)(62,70,66)(63,67,71)(64,72,68)(73,77,81)(74,82,78)(75,79,83)(76,84,80)(85,89,93)(86,94,90)(87,91,95)(88,96,92)(97,105,101)(98,102,106)(99,107,103)(100,104,108)(109,113,117)(110,118,114)(111,115,119)(112,120,116)(121,129,125)(122,126,130)(123,131,127)(124,128,132)(133,141,137)(134,138,142)(135,143,139)(136,140,144), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)>;
G:=Group( (1,16)(2,13)(3,14)(4,15)(5,46)(6,47)(7,48)(8,45)(9,32)(10,29)(11,30)(12,31)(17,42)(18,43)(19,44)(20,41)(21,27)(22,28)(23,25)(24,26)(33,40)(34,37)(35,38)(36,39)(49,86)(50,87)(51,88)(52,89)(53,90)(54,91)(55,92)(56,93)(57,94)(58,95)(59,96)(60,85)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,97)(69,98)(70,99)(71,100)(72,101)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,141)(81,142)(82,143)(83,144)(84,133)(109,128)(110,129)(111,130)(112,131)(113,132)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,30)(2,31)(3,32)(4,29)(5,20)(6,17)(7,18)(8,19)(9,14)(10,15)(11,16)(12,13)(21,39)(22,40)(23,37)(24,38)(25,34)(26,35)(27,36)(28,33)(41,46)(42,47)(43,48)(44,45)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,131)(58,132)(59,121)(60,122)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,135)(98,136)(99,137)(100,138)(101,139)(102,140)(103,141)(104,142)(105,143)(106,144)(107,133)(108,134), (1,58,137)(2,134,55)(3,52,143)(4,140,49)(5,85,74)(6,83,94)(7,91,80)(8,77,88)(9,119,64)(10,61,116)(11,113,70)(12,67,110)(13,73,92)(14,89,82)(15,79,86)(16,95,76)(17,65,112)(18,109,62)(19,71,118)(20,115,68)(21,117,66)(22,63,114)(23,111,72)(24,69,120)(25,130,101)(26,98,127)(27,124,107)(28,104,121)(29,102,123)(30,132,99)(31,108,129)(32,126,105)(33,142,59)(34,56,139)(35,136,53)(36,50,133)(37,93,78)(38,75,90)(39,87,84)(40,81,96)(41,122,97)(42,106,131)(43,128,103)(44,100,125)(45,138,51)(46,60,135)(47,144,57)(48,54,141), (1,36,48)(2,45,33)(3,34,46)(4,47,35)(5,14,37)(6,38,15)(7,16,39)(8,40,13)(9,23,20)(10,17,24)(11,21,18)(12,19,22)(25,41,32)(26,29,42)(27,43,30)(28,31,44)(49,57,53)(50,54,58)(51,59,55)(52,56,60)(61,65,69)(62,70,66)(63,67,71)(64,72,68)(73,77,81)(74,82,78)(75,79,83)(76,84,80)(85,89,93)(86,94,90)(87,91,95)(88,96,92)(97,105,101)(98,102,106)(99,107,103)(100,104,108)(109,113,117)(110,118,114)(111,115,119)(112,120,116)(121,129,125)(122,126,130)(123,131,127)(124,128,132)(133,141,137)(134,138,142)(135,143,139)(136,140,144), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144) );
G=PermutationGroup([[(1,16),(2,13),(3,14),(4,15),(5,46),(6,47),(7,48),(8,45),(9,32),(10,29),(11,30),(12,31),(17,42),(18,43),(19,44),(20,41),(21,27),(22,28),(23,25),(24,26),(33,40),(34,37),(35,38),(36,39),(49,86),(50,87),(51,88),(52,89),(53,90),(54,91),(55,92),(56,93),(57,94),(58,95),(59,96),(60,85),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,97),(69,98),(70,99),(71,100),(72,101),(73,134),(74,135),(75,136),(76,137),(77,138),(78,139),(79,140),(80,141),(81,142),(82,143),(83,144),(84,133),(109,128),(110,129),(111,130),(112,131),(113,132),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(120,127)], [(1,30),(2,31),(3,32),(4,29),(5,20),(6,17),(7,18),(8,19),(9,14),(10,15),(11,16),(12,13),(21,39),(22,40),(23,37),(24,38),(25,34),(26,35),(27,36),(28,33),(41,46),(42,47),(43,48),(44,45),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,129),(56,130),(57,131),(58,132),(59,121),(60,122),(61,79),(62,80),(63,81),(64,82),(65,83),(66,84),(67,73),(68,74),(69,75),(70,76),(71,77),(72,78),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(91,109),(92,110),(93,111),(94,112),(95,113),(96,114),(97,135),(98,136),(99,137),(100,138),(101,139),(102,140),(103,141),(104,142),(105,143),(106,144),(107,133),(108,134)], [(1,58,137),(2,134,55),(3,52,143),(4,140,49),(5,85,74),(6,83,94),(7,91,80),(8,77,88),(9,119,64),(10,61,116),(11,113,70),(12,67,110),(13,73,92),(14,89,82),(15,79,86),(16,95,76),(17,65,112),(18,109,62),(19,71,118),(20,115,68),(21,117,66),(22,63,114),(23,111,72),(24,69,120),(25,130,101),(26,98,127),(27,124,107),(28,104,121),(29,102,123),(30,132,99),(31,108,129),(32,126,105),(33,142,59),(34,56,139),(35,136,53),(36,50,133),(37,93,78),(38,75,90),(39,87,84),(40,81,96),(41,122,97),(42,106,131),(43,128,103),(44,100,125),(45,138,51),(46,60,135),(47,144,57),(48,54,141)], [(1,36,48),(2,45,33),(3,34,46),(4,47,35),(5,14,37),(6,38,15),(7,16,39),(8,40,13),(9,23,20),(10,17,24),(11,21,18),(12,19,22),(25,41,32),(26,29,42),(27,43,30),(28,31,44),(49,57,53),(50,54,58),(51,59,55),(52,56,60),(61,65,69),(62,70,66),(63,67,71),(64,72,68),(73,77,81),(74,82,78),(75,79,83),(76,84,80),(85,89,93),(86,94,90),(87,91,95),(88,96,92),(97,105,101),(98,102,106),(99,107,103),(100,104,108),(109,113,117),(110,118,114),(111,115,119),(112,120,116),(121,129,125),(122,126,130),(123,131,127),(124,128,132),(133,141,137),(134,138,142),(135,143,139),(136,140,144)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)]])
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 3C | 3D | 3E | 3F | 4A | ··· | 4H | 6A | ··· | 6G | 6H | ··· | 6U | 6V | ··· | 6AP | 12A | ··· | 12P |
order | 1 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | 3 | 3 | 6 | 6 | 6 | 9 | ··· | 9 | 2 | ··· | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | - | + | + | - | + | ||||||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | S3 | Dic3 | D6 | C3×S3 | C3×Dic3 | S3×C6 | C32⋊C6 | C32⋊C12 | C2×C32⋊C6 |
kernel | C22×C32⋊C12 | C2×C32⋊C12 | C23×He3 | C22×C3⋊Dic3 | C22×He3 | C2×C3⋊Dic3 | C2×C62 | C62 | C2×C62 | C62 | C62 | C22×C6 | C2×C6 | C2×C6 | C23 | C22 | C22 |
# reps | 1 | 6 | 1 | 2 | 8 | 12 | 2 | 16 | 1 | 4 | 3 | 2 | 8 | 6 | 1 | 4 | 3 |
Matrix representation of C22×C32⋊C12 ►in GL10(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
8 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 8 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 |
G:=sub<GL(10,GF(13))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0],[8,0,0,0,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,0,0,7,6,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,0,8,0,0] >;
C22×C32⋊C12 in GAP, Magma, Sage, TeX
C_2^2\times C_3^2\rtimes C_{12}
% in TeX
G:=Group("C2^2xC3^2:C12");
// GroupNames label
G:=SmallGroup(432,376);
// by ID
G=gap.SmallGroup(432,376);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,168,4037,1034,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^12=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1*d,e*d*e^-1=d^-1>;
// generators/relations